15,664 research outputs found

    Subcritical Superstrings

    Get PDF
    We introduce the Liouville mode into the Green-Schwarz superstring. Like massive supersymmetry without central charges, there is no kappa symmetry. However, the second-class constraints (and corresponding Wess-Zumino term) remain, and can be solved by (twisted) chiral superspace in dimensions D=4 and 6. The matter conformal anomaly is c = 4-D < 1. It thus can be canceled for physical dimensions by the usual Liouville methods, unlike the bosonic string (for which the consistency condition is c = D <= 1).Comment: 9 pg., compressed postscript file (.ps.Z), other formats (.dvi, .ps, .ps.Z, 8-bit .tex) available at http://insti.physics.sunysb.edu/~siegel/preprints/ or at ftp://max.physics.sunysb.edu/preprints/siege

    Thermalization via Heat Radiation of an Individual Object Thinner than the Thermal Wavelength

    Full text link
    Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and may lead to technical applications. Here, we study, over a large temperature range, the thermalization dynamics due to far-field heat radiation of an individual, deterministically produced silica fiber with a predetermined shape and a diameter smaller than the thermal wavelength. The temperature change of the subwavelength-diameter fiber is determined through a measurement of its optical path length in conjunction with an ab initio thermodynamic model of the fiber structure. Our results show excellent agreement with a theoretical model that considers heat radiation as a volumetric effect and takes the emitter shape and size relative to the emission wavelength into account

    Green-Schwarz Formulation of Self-Dual Superstring

    Full text link
    The self-dual superstring has been described previously in a Neveu-Schwarz-Ramond formulation with local N=2 or 4 world-sheet supersymmetry. We present a Green-Schwarz-type formulation, with manifest spacetime supersymmetry.Comment: 11 pg., (uuencoded dvi file) ITP-SB-92-5

    Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene

    Full text link
    We study the broadband optical conductivity and ultrafast carrier dynamics of epitaxial graphene in the few-layer limit. Equilibrium spectra of nominally buffer, monolayer, and multilayer graphene exhibit significant terahertz and near-infrared absorption, consistent with a model of intra- and interband transitions in a dense Dirac electron plasma. Non-equilibrium terahertz transmission changes after photoexcitation are shown to be dominated by excess hole carriers, with a 1.2-ps mono-exponential decay that reflects the minority-carrier recombination time.Comment: 4 pages, 3 figures, final versio

    Palomar 13: a velocity dispersion inflated by binaries ?

    Full text link
    Recently, combining radial velocities from Keck/HIRES echelle spectra with published proper motion membership probabilities, Cote et al (2002) observed a sample of 21 stars, probable members of Palomar 13, a globular cluster in the Galactic halo. Their projected velocity dispersion sigma_p = 2.2 +/-0.4 km/s gives a mass-to-light ratio M/L_V = 40 +24/-17, about one order of magnitude larger than the usual estimate for globular clusters. We present here radial velocities measured from three different CCD frames of commissioning observations obtained with the new ESO/VLT instrument FLAMES (Fibre Large Array Multi Element Spectrograph). From these data, now publicly available, we measure the homogeneous radial velocities of eight probable members of this globular cluster. A new projected velocity dispersion sigma_p = 0.6-0.9 +/-0.3 km/s implies Palomar 13 mass-to-light ratio M/L_V = 3-7, similar to the usual value for globular clusters. We discuss briefly the two most obvious reasons for the previous unusual mass-to-light ratio finding: binaries, now clearly detected, and more homogeneous data from the multi-fibre FLAMES spectrograph.Comment: 9 pages, 2 Postscript figure

    Three-Fold Diffraction Symmetry in Epitaxial Graphene and the SiC Substrate

    Full text link
    The crystallographic symmetries and spatial distribution of stacking domains in graphene films on SiC have been studied by low energy electron diffraction (LEED) and dark field imaging in a low energy electron microscope (LEEM). We find that the graphene diffraction spots from 2 and 3 atomic layers of graphene have 3-fold symmetry consistent with AB (Bernal) stacking of the layers. On the contrary, graphene diffraction spots from the buffer layer and monolayer graphene have apparent 6-fold symmetry, although the 3-fold nature of the satellite spots indicates a more complex periodicity in the graphene sheets.Comment: An addendum has been added for the arXiv version only, including one figure with five panels. Published paper can be found at http://link.aps.org/doi/10.1103/PhysRevB.80.24140

    More Discriminants with the Brezing-Weng Method

    Get PDF
    The Brezing-Weng method is a general framework to generate families of pairing-friendly elliptic curves. Here, we introduce an improvement which can be used to generate more curves with larger discriminants. Apart from the number of curves this yields, it provides an easy way to avoid endomorphism rings with small class number
    • …
    corecore